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RESEARCH ARTICLE

Productivity and Costs of Mechanized Skidding operations at Sao Hill 
Forest Plantation, Tanzania

Gilberth Prosper Temba , Ernest William Mauya and George Ansigar Migunga 

Department of Forest Engineering and Wood Sciences, College of Forestry, Wildlife and Tourism, Sokoine University of 
Agriculture, Tanzania. 

ABSTRACT 
Due to global advancement of technology in forest operations, utilization of advanced 
machineries such as grapple skidder (GS) in timber harvesting has been increasing in the 
last decades. However, in order to understand their contribution in sustainable harvesting 
operations, it is important to understand their performance under different operating envir
onment. Therefore, this study aimed to quantify productivity and cost of mechanised skid
ding operations at Sao Hill Forest plantation (SHFP). Six variables; diameter at a breast 
height (dbh), tree height, skidding distance, slope, costs, and cycle time (determined using 
detailed continuous time study) were collected in 120 GS observations.GS productivity and 
costs were estimated using productive machine hour (PMH) and delays inclusion approach. 
Regression models were developed using a generalized linear model (GLM) approach. GS 
productivity under PMH was 2.6% higher than the one including delay time, while skidding 
costs was 2.1% higher in the approach including delays. This study revealed significant varia
tions (p-value <0.05) in productivity and cost on various terrain classes. At 0 m – 50 m dis
tance, an average delays free GS productivity was 85.5 m3/h, with costs amounting to 1.7 
USD/m3. On the distance exceeding 150 m, productivity dropped to 20.1 m3/h, and costs 
increased to 12.7 USD/m3. Likewise, in 0.0% - 10.0% slope range, average delays free GS 
productivity and costs was 100 m3/h and 1.5 USD/m3 respectively, while at 20.1% - 30.0% 
slope range, productivity dropped to 32.6 m3/h and costs raised to 3.9 USD/m3. Skidding 
distance, slope, and volume per trip were robust predictors of the GS productivity and costs, 
yielding pseudo-R2 values of 58.1% and 64.3%, respectively. Therefore, this study developed 
statistical models useful for predicting GS productivity and costs, however, their applications 
are recommended to be within the ranges of the variables used to develop the models.
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Introduction

Forest sector particularly plantation forests form a sig
nificant natural resource that is renewable in both eco
nomic and environmental sense (Spinelli et al., 2020). 
Therefore, proper management through careful and 
sustainable utilization in connection with climate 
change are very essential (Hartsch et al. 2021) and are 
highly encouraged to ensure sustainability to subse
quent generations (Visser and Stampfer, 2003). This 
can be achieved by ensuring all key operations includ
ing timber harvesting are efficiently planned and man
aged (Parajuli et al., 2020).

To ensure proper planning and management of 
these operations particularly for timber harvesting so 
as to meet expected timber quality and demand 
(Jonsson et al., 2023), it is essential to consider various 
factors which limits their productivity and cost. 
Among others include; species type, age, stand density, 
timber size, bunching strategy, learning curve of the 
crew (Varch et al. 2021), site conditions (slope, soil, 
obstacles), available machine types, harvesting 

prescriptions, intended final products (Akay, 1998; 
Behjou, 2018; Jirou�sek et al., 2007; Kluender and 
Stokes, 1996; Mizaras et al., 2008; Parajuli et al., 2020), 
training and motivation level to forest workers 
(�Spor�ci�c et al., 2023).

With the advancement of technology (i.e., due to 
widespread availability of information technologies 
(IT) (Llorente et al. 2023; Spinelli et al. 2019), increase 
in timber demand driven by urbanization and popula
tion growth, increase in safety level (Obi and Visser 
2020), as well as intentions for costs reduction (Varch 
et al. 2021), logging operations have gradually shifted 
toward full mechanization (Mizaras et al., 2008). This 
transition has been facilitated by the introduction of 
highly efficient machines such as farm tractors, feller 
bunchers, and skidders (Bavaghar et al., 2010; Borz 
et al., 2015; G€olci et al., 2018; Orlovsk�y et al., 2020). 
These machines are known for their significant pro
duction capacity and cost-effectiveness when properly 
planned. This had driven various researchers across 
the world to see the importance of analysing 
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productivity and costs of these machines based on 
real-world scenarios to enhance its proper utilization 
to its fully capacity. Various techniques, including 
gross time study, detailed time study (Borz et al., 
2013) and regression analysis such as Ordinary Least 
Square (OLS) have been widely applied in global 
research (Akay et al., 2004a) to estimate time con
sumption, productivity (Jonsson et al. 2023) and deter
mine the impact of environmental, stand, economic, 
and human factors on machinery productivity and 
costs (Orlovsk�y et al., 2020; Proto et al., 2018). For 
instance, studies by Ghaffariyan (2020a), Kulak et al. 
(2017), Sabo and Por�sinsky (2005), and Stoilov et al. 
(2021) applied multiple linear regression analysis on 
predicting GS time consumption, productivity and 
costs. Under all reviewed studies, the variables; number 
of logs, slope, skidding distance, bunching distance 
and volume per turn were observed to be significant 
(p-value < 0.05). Moreover, study by Borz et al. (2013) 
applied Stepwise backward regression techniques which 
normally involved combining all possible independent 
variables in the model at the beginning, followed by 
redundancy of insignificant variables at the end in 
order to bring highly efficient predictive models.

Although OLS have gained popularity in the field of 
forest management, its applications is limited by a 
number of assumptions (Liski et al., 2020), conse
quently, log and back transformation have always been 
used to account for the assumptions related with lin
earity and normality. In light of these limitations, a 
generalized linear model (GLM) has emerged as a 
valuable extension to the regression model (Zhang 
et al., 2020). Unlike traditional methods, the GLM can 
estimate machinery productivity more flexibly without 
requiring data transformation. It offers a better fit to 
the original data, handles collinear variables, and facili
tates formulation of highly precise models for accurate 
estimations of the machinery performance in the field 
of forest operations (Orlovsk�y et al., 2020).

Despite their predictive usefulness, models for esti
mating productivity and costs in mechanized timber 
harvesting operations are limited particularly for the 
studies conducted in the Sub-Saharan Africa, including 
Tanzania. Furthermore, productivity and cost of timber 
harvesting machineries are mostly influenced by envir
onmental factors, stand characteristics, and machine- 
specific attributes which are highly contingent upon 
the specific locality and the machine itself. 
Consequently, there is a pressing need for further 
research to quantify and develop predictive models 
that can provide most accurately localized information 
for future predictions.

In Tanzania mechanized timber harvesting opera
tions begin since early 2000s through integration of 
various harvesting systems such as; short wood, tree 
length and whole tree system using various machines 
such as; feller buncher, cable skidder, GS, farm tractor 
and three wheeled loaders. Various companies, includ
ing Mufindi Paper Mill (MPM), Green Resources 
Company Ltd. (GRL), and Tanzania Wattle Company 
(TANWAT) which are situated in the southern 

highlands, own a majority of these machines (Mauya 
et al., 2011). Despite of their known production cap
ability, accurate machinery productivity and costs esti
mations still remain challenging due to largeness of 
SHFP, its diverse terrain and stand attributes. 
Therefore, this study addresses this knowledge gap by 
(i) quantify the productivity and costs of GS using the 
whole tree harvesting system, (ii) develop models that 
encompass GS time consumption, productivity, and 
costs at SHFP (iii) predicting GS productivity and costs 
across different operating terrain conditions at SHFP 
using the developed models. It is anticipated that the 
results from this study will serve as a valuable guide 
(Akay et al., 2004b; Spinelli et al., 2002) to logging 
managers, contractors, and forest owners (Miyajima 
et al., 2021) in accurately estimating and efficiently uti
lizing harvesting machinery in diverse locations 
(Ackerman et al., 2018; Borz et al., 2015; Gilanipoor 
et al., 2012).

Materials and methods

Study area description

This study was conducted at SHFP located in the 
Southern highland of Tanzania, Iringa region, Mufindi 
District. The plantation lies between 8� 180 S to 8� 330
S latitudes and 35� 060 E to 35� 200 E longitudes 
(Figure 1).

The plantation is about 18km from Mafinga town 
with estimated total area of 135,903 ha. Due to its 
largeness, currently the plantation is administratively 
segmented into four blocks/divisions namely: Irundi, 
Ihefu, Ihalimba and Mgololo (MNRT, 2018). Each div
ision is broken into compartments differentiated by 
species, planting date and site class. Generally, the 
plantation is composed of exotic softwood tree species 
of Pinus patula, Pinus elliottii, Pinus caribeae, and 
Cupressus lusitanica, together with hard wood species 
of Eucalyptus maidenii, Eucalyptus saligna and 
Eucalyptus camaldulensis. Also, the plantation com
prises small patches of natural vegetation characterized 
by the mosaic of open grassland with scattered indi
genous tree species of Erythrina abyssinica, Parinari 
curatellifolia, Apodytes dimidiata and Albizia 
petersiana.

Topography and Climate

The plantation is on rolling terrain interacting with 
some low hills and wide flat-bottomed valleys with an 
altitude ranging from 1,700m to 2,000 m above sea 
level. The soils of the area are acidic deep soil with a 
pH range from 4.4 to 5.4. The climate is characterized 
by unimodal rainfall pattern starting from November 
to April and a dry season from May to late October. 
The mean annual rainfall is 1,300 mm with a range of 
725 mm to 1,400 mm. The temperatures are fairly cool, 
with the minimum monthly temperature range 
between 10 �C to 18 �C while the maximum range is 
between 23 �C to 28 �C (MNRT, 2018).

2 G. P. TEMBA ET AL.                                                                                                                                     E-ISSN 2158-0715



The study focused on mechanized timber skidding 
operations using the whole tree system. Harvesting 
operations in the study area involves clear-cutting, uti
lizing both semi-mechanized and mechanized 
approaches. Mechanized operations employ machinery 
like feller bunchers, farm tractors with wire rope 
winches, cable and grapple skidders. Semi-mechanized 
operations primarily rely on chainsaws and farm trac
tors. The main harvesting systems employed are cut- 
to-length, tree-length, and whole tree systems.

Sampling procedures

The study employed two phase sampling. On the first 
phase, forest compartment for the study was obtained 
with the aid of SHFP management plan in order to 
avoid destruction of immature forest stands. Moreover, 
since our study focused on ground skidding operation, 
terrain variables were considered as one of the factors 
that influence the performance of the GS. Therefore, 
forest compartment named ILASA 3/9 with heteroge
neous terrain was selected with the aid of digital eleva
tion model (DEM) with 30m x 30m resolution 
downloaded from https://earthexplorer.usgs.gov/. A 
total of 30 square plots of 15 m x 15 m were randomly 
distributed throughout the compartment to capture all 
ranges of terrain (Figure 2). On second phase, 120 GS 
work cycle with respective work elements was deter
mined using the formula by Murphy, (2005) as indi
cated in equation 1. Whereby, 10 pilot time study was 
conducted, giving an average cycle time (i.e., mean 
WCT) of 6.873 minutes, Variance cycle time (i.e., Var 

WCT) of 0.071 minutes and 0.95 precision level (E) 
was used.

n ¼ t2�VarðWCTÞ=½E�WCT=100�2 (1) 

Where; n¼ number of work cycles to be studied, 
t¼ Student’s t-value, Var (WCT) ¼ Variance of the 
work cycle time, E¼ Level of precision desired, 
WCT¼ Mean work cycle time (minutes).

Machinery description

The machinery used under this study was CAT 525 
grapple skidder, purchased by MPM in 2018. It is 
American manufactured caterpillar brand with the fol
lowing characteristics available in www.ritchiespecs. 
com as presented in Table 1.

Data collection

GS cycle time (minutes), individual tree variables (dbh 
and height), terrain variables (skidding distance and 
slope) and costs variables were collected. The details 
for each collected variable are described below.

GS cycle time

GS productive time (PMH) which refers to the time 
spent by the skidder to perform a given task at the 
workplace (Magagnotti et al., 2013) was recorded 
through detailed continuous time study technique 
using stopwatch. The GS cycle time was segmented 

Figure 1. Map of SHFP showing the compartment understudy.
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into five work elements namely: travel empty (TE), 
positioning (PS), grappling (GL), travel loaded (TL) 
and unloading (UNL). Also, necessary delays (inevit
able interruption due to the nature of the work and 
the environment), as well as unnecessary delays (the 
wastage of time which can be eliminated by improving 
supervision and training to workers) (Mauya 2022), 
were recorded on each work element of the GS once 
they occurred. Time recording started at the beginning 
of a work cycle and the stopwatch was paused at the 
end of the cycle. Elapsed time was read directly from 
the stopwatch and recorded on the prepared field 
forms.

Tree variables

Before the beginning of skidding operations, all stand
ing trees within 15m x 15m square plots were labelled 

by numbers. Thereafter, dbh and tree height for each 
tree were measured using calliper and vertex hypsom
eter respectively. Since skidding operation was per
formed using whole tree harvesting system (i.e., with 
branches and tops intact to the main trunk), the vol
ume of each tree was estimated using the allometric 
single tree equation (Equation 2) by Malimbwi et al., 
(2016). The model applied is compatible with Pinus 
patula grown in the study area.

Tree volume ¼ exp ð−9:04925 þ 1:14781

� ln heightð Þ þ 1:5496

� ln dbhð Þ (2) 

Terrain variables

Skidding distance (m) and slope (%) were the two-ter
rain variables recorded during skidding operation. 
Skidding distance from the stump site to the landing 
was measured using measuring tape, while slope was 
measured using vertex hypsometer.

GS costs variables

GS operational (i.e., fixed and variable) costs informa
tion was collected by interviewing logging supervisor 
and procurements personnel from Mufindi Paper Mill. 
Simply, fixed (standing or capital) costs are the ones 
that need to be recovered by machine irrespective of 
the amount of work a machine does or the revenue it 
earns and are associated only with owning the 
machine. Normally includes: depreciation, interest, 
insurance, and taxes (Ackerman et al., 2014). On the 
other hand, variable (running) costs are the ones 
incurred when the machine is working, travelling 
empty, or when the engine is running (Bjorheden and 

Figure 2. Sampling procedure used to select forest compartment understudy.

Table 1. GS descriptions

Machinery specifications Description

Model CAT 525
Configuration Rubber-tired
Overall length 6.00 m
Overall width 3.13 m
Ground clearance 0.53 m
Wheel base 3.50 m
Engine Model CAT 3304 DIT Diesel
Gross power 175 hp
Operating weight 15200 kg
Brakes service type Hydraulic actuated, oil disc
Maximum Drawbar pull 19731.3 kg
Maximum forward speed 16.9 mph
Maximum reverse speed 12 mph
Estimated operating weight 13558.3 kg
Grapple bunching capacity 1.161m2 (1065.9 kg)
Maximum operating distance 500 m
Maximum operating slope 30 %

CAT¼ Caterpillar, hp¼Horse power, kg¼ Kilogram, m ¼ meter, 
mph¼Miles per hour.
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Thompson, 1995). They normally vary directly with 
the level of output produced by the machine. It 
includes costs for labour, fuel, lubricants, machine 
maintenance and tires. (Ackerman et al., 2014; 
Nwokoye and Ilechukwu, 2018).

Data analysis

GS productivity (m3/h) was computed using two 
approaches; with inclusion and exclusion of necessary 
delays i.e., equations 3 and 5 respectively.

PD ¼
Tvol m3ð Þx F x 60

T
(3) 

Where: PD is the GS productivity (m3/h) per work 
cycle (including necessary delay), Tvol is skidded tree 
volume (m3) per work cycle, 60 is the number of 
minutes per a given workplace hour and T is total GS 
productive time (minutes) per work cycle, F is the pro
portion of productive time.

F ¼
100� D

100
(4) 

Where D is Delay time expressed as a percentage of 
workplace time in minutes.

On the other hand, GS productivity without delay 
time P(PMH) was computed using the formula adapted 
in the studies by Mauya (2022), and Miyajima et al., 
(2021a) Equation 5.

P ¼
Tvol m3ð Þx ð60Þ

PMH
(5) 

Where: P is the GS productivity (m3/h), 60 is the 
conversion factor for converting minutes to hours and 
PMH is the productive machine hour in minutes.

Lastly, paired t-test was performed to test if there is 
a significant difference between GS productivity with 
delay and without delay time.

All GS cost components (Equations 6 to 16) were 
computed based on the formulas described by 
Sessions, (2007). The machine (i.e., GS) under study 
was CAT brand, with registration number T.809 
DNB, having 175 horse power and it was purchased in 
the year 2018.The machinery delivered costs was 
304,117.4 USD and has saved over a period of six years 
up to the present study. Furthermore, the machinery 
annual tax was amounting to 24,472.3 USD/year, with 
zero interest rate since the machine was purchased 
cash. The average working time was 3506 h/year, 
with the labour (operator’s) costs amounting to 0.56 
USD/h.

Fixed costs

1. Depreciation

Depreciation Dð Þ ¼
Delivered cost x 0:90

life time ðhoursÞ
(6) 

2. Insurance

Insurance Ið Þ ¼
Delivered costs x0:60 x0:03

Average hours per year
(7) 

3. Interest (i)

Interest ið Þ ¼
Delivered cost x 0:60 x interest rate %ð Þ

Average hours per year
(8) 

4. Taxes (Tc)

Taxes Tcð Þ ¼
Anual tax amount

Average hours per year
(9) 

Variable costs

1. Labor costs (Lc)

Labor cost Lcð Þ ¼
Labour salary per period xð1þ fÞ

Machine hours in period
(10) 

Where; f¼ Fringe benefits expressed as % of dir
ect labor costs (i.e., 0.5% in this case).

2. Fuel cost (Fc)

Fuel costs ðFcÞ ¼ GHP x X x CL (11) 

Where: GHP¼Gross engine horsepower (i.e., 
175 HP in this case), CL¼ Fuel price per liter (i.e., 
1.236 USD/liter in this case), X ¼ 0.12 for diesel 
and 0.175 for the gasoline engine.

3. Lubricants costs (Oil and grease)

Lubricant costs Lð Þ ¼
GHP x X x 3:4

100
(12) 

Where; GHP¼Gross engine horsepower (i.e., 
175 HP in this case), and X ¼ 0.20 for tractors, 
skidders, front end loaders and trucks, X ¼ 0.30 
for feller bunchers and knuckle boom loaders, X 
¼ 0.50 for processors, harvesters and forwarders.

4. Maintenance costs (Mc)

Maintenance costs Mcð Þ ¼
Delivered costs

Life time hoursð Þ

(13) 

5. Tires costs (Ty)

Tires costs ðTyÞ ¼ 0:0006 x CST (14) 

Where; CST¼Price of a set of the replaced tires 
(i.e., 2,606.7 USD in this case). 

Hourly skidding costs (USD/h)

Hourly skidding costs USD=hð Þ

¼ D þ I þ I þ Tc þ Lc þ Fc þ L þ Mc

þ Ty
(15) 
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Unit skidding costs USD=m3
� �

¼
Hourly skidding costs ðUSD=hÞ

Production rateðm3=hÞ
(16) 

Statistical analysis

Model development

Previous studies (e.g. Conrad et al., 2013, Long, 2003, 
Wang et al., 2004, 2005) were used as the baseline for 
developing GS time consumption, productivity and 
costs models for this study. The normality of the data 
set was tested using Shapiro wilk test whereby variables 
with a p-value less than 0.05 were considered to be not 
normally distributed (Yap and Sim, 2011; Korkmaz 
et al., 2014). Modelling was performed using a GLM 
approach (Equation 17) in R-statistical software since 
the GLMs provide greater flexibility in analysing data 
even those related to non-normal distributions 
(Ravindra et al., 2019). Due to the nature of the data 
being continuous, the Gaussian family was employed 
to ensure error terms are equally distributed through
out the given data set. Predictor variables for each 
model were further examined using variance inflation 
factor (VIF) to test for multicollinearity. Variables with 
VIF>5 were excluded from the model, indicating a 
sign of multicollinearity (Shabani et al., 2021).

g lið Þ ¼ ni ¼ aþ b1xi1 þ b2xi 2 þ . . . bkxik þ ᶓ
(17) 

Where: g(mi) ¼ ni is a smooth and invertible linea
rizing link function g (�), which transforms the expect
ation of the response variable, li ¼ E(Yi), to the linear 
predictor, a is the model intercept while “b1 xi1 þ b2 x 
i2 þ… .bk xi k” are independent variables which repre
sent the change in the dependent variable associated 
with a one-unit change in each independent variable 
(Lindsey, 1998; Nelder and Wedderburn, 1972).

Finally, pseudo-R-squares (Equation 18) and 
residual plots were used to assess the goodness of fit 
for the developed model.

Pseudo R� squared ¼ 1 −
Residual deviance

Null deviance

� �

�100

(18) 

Model validation

For the precision and accuracy of the developed model 
to be known, model validation is inevitable (James 
et al., 2013; Jimmy et al., 2013; Mauya, 2022). Based 
on the available data set (i.e.,120 GS observations), 
were segmented into ten-folds randomly. One subset 
was held out for checking the model performance 
while the model is trained on the remaining subsets 
(James et al., 2013). Then residual root mean square 
error (RMSEr) as an indicator for assessing model 
quality was determined using its predicted values 
(Equations 19 and 20).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðyi − yî Þ
2

n

s

(19) 

RMSEr ¼
RMSE

y ̅
x100 (20) 

Where: 
Pn

i¼1 is the sum of all observations from 
i¼ 1 to i¼ n, yi and ŷ denote observed and predicted 
variables for both time consumption, productivity and 
unit skidding costs in a given ith observation 
respectively.

y̅ denotes the mean for observed time consumption, 
productivity and units skidding costs for all GS cycles, 
n is the total number of observations in the dataset.

Results

GS summary statistics

A total of 120 GS work cycles were observed for the 
entire study. The effective GS workplace time (PMH) 
ranged from 0.593 minutes at a minimum skidding dis
tance of 14.2 m and slope of 0.4% to 11.878 minutes at 
a maximum skidding distance of 220 m and slope of 
26.0%. The average GS time was 4.519 minutes under 
PMH approach and 4.625 minutes when including 
necessary delays. The most GS time-consuming work 
element was travel loaded (TL) which consumed a sub
stantial part of total skidding time for about 47.9%, 
while the least work element was unloading (Figure 3). 
The summary for all variables is presented in Table 2.

GS productivity and costs

GS productivity for both productive machine hour 
(PMH) and when including necessary delays, were 67.5 
m3/h and 64.1 m3/h respectively. Individual cost items 
and unit skidding costs for both approaches are pre
sented in Table 3. Furthermore, the performed paired 
t-test indicated a significant difference between prod
uctivity and costs while using the effective time (PMH) 
and when including necessary delays (p-value < 0.05).

GS time consumption, productivity and costs 
models

Time consumption models
The explanatory (independent) and response (depend
ent) variables vary between models and their number 
ranged from one to three. The parameter estimates for 
all models except unloading were significantly different 
from zero (p <0.05) and the VIF values were <5 indi
cating an acceptable level of multicollinearity. For the 
case of time consumption, model for predicting 
machine productive hours (PMH) and individual work 
elements i.e., travel empty, positioning, grappling, 
travel loaded and unloading were developed (Table 4). 
Pseudo-R-square value which explains the goodness of 
fit of the model varied among productive work 
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elements. The highest pseudo-R-squared was observed 
in the total PMH model (81.5%), while the least 
pseudo-R-squared was observed in unloading (UNL) 
work element (9.4%). The performance of each model 
was further assessed through residual plots (Figure 4).

Cross-validation results showed that the RMSEr 
value for the total productive time model was relatively 
smaller as compared to individual work elements. 
However, the scatter plots for positioning and unload
ing time had shown a behaviour of over-prediction 
since some of the scatter points deviate far from the 
average value (Figure 5).

Productivity and costs models

For both GS productivity and unit skidding costs, the 
variables skidding distance (m) and slope (%) appeared 
to be good predictors for estimating machine product
ivity and costs. The pseudo-R-squared for productivity 
and costs models (Equations 21 and 22) were 58.1% 
and 64.3% respectively indicating a good fit for both 
models. The residual plots for both models are nor
mally distributed, with fewer highly deviated scatter 
points, which are normally caused by the few observa
tions with higher values (Figure 6).

Productivity ðm3=hÞ ¼ 72:651 − 2:309Slope

− 0:332SkD

þ 10:890Av:trip volume
(21) 

Unit skidding costs ðUSD=m3Þ

¼ −0:009 − 0:027Slopeþ 0:065 SkD (22) 

The cross-validation results indicated that RMSEr 
value for the GS productivity and unit skidding cots 
models were 49.3% and 50.4% respectively. 
Furthermore, RMSEr were observed to vary across ter
rain classes. Both productivity and costs models 
showed lowest RMSEr value at a distance and slope 
class of 0.00-50.0 m and 0.00 – 10.0% respectively, 
while the highest RMSEr value was observed at the 
highest distance and slope class (Table 5). This implies 
that skidding distance and slope were the main predic
tors for the GS productivity and costs (Figure 7a 
and 7b).

Figure 3. GS time distribution for each work element at a mean dis
tance of 59.2 m and slope of 13.5%.

Table 2. Skidding summary statistics

Variable

Statistical parameter

Minimum Maximum Mean Standard deviation

Dependent variables Travel empty (min) 0.180 4.817 1.308 1.003
Positioning (min) 0.003 2.150 0.576 0.542
Grappling (min) 0.010 1.483 0.387 0.318
Travel loaded (min) 0.083 6.117 2.165 1.314
Unloading (min) 0.033 0.250 0.084 0.043
Necessary delay (min) 0.000 1.700 0.106 0.256
Unnecessary delay (min) 0.000 1.633 0.014 0.149
Total productive time (min) 0.593 11.878 4.519 2.498
Total time including delays (min) 0.593 11.878 4.625 2.516

Independent variables Tree dbh (cm) 12.000 69.000 32.497 11.581
Tree height (m) 11.600 33.600 23.555 4.590
Tree volume (m3) 0.123 3.807 1.086 0.716
Volume per trip (m3) 0.259 8.352 3.890 1.770
Slope (%) 0.400 26.600 13.522 7.996
Distance (m) 14.200 220.000 59.218 36.384

Table 3. GS operational costs

Value under PMH Values when including NED
ITEM Average hourly costs (USD/h) Average hourly costs (USD/h)

Depreciation 11.73 11.98
Insurance 1.41 1.44
Interest 0.00 0.00
Labor 0.51 0.52
Fuel 70.15 71.67
Lubricants 6.78 6.93
Maintenance 5.86 5.99
Tires 1.41 1.44
Unit skidding cots (USD/m3) 3.36 3.50

PHM¼ Productive machine hour, NED¼ necessary delay time
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Table 4. GS time consumption model for individual work elements and total productive time.

Work element Time consumption model Pseudo R-squared (%) RMSEr (%)

Travel empty −0.069þ 0.012 Slope þ 0.02SkD 67.1 37.1
Positioning −0.116þ 0.051 Slope 57.0 60.4
Grappling −0.184þ 0.147 Volume per trip 66.7 46.5
Travel loaded 0.320þ 0.028 Slopeþ 0.025 SkD 58.0 39.4
Unloading 0.076þ 0.002 Trees per load 9.4 49.3
Total productive time 0.761 1 0.088 Slope 1 0.045 SkD - 0.003 Av.trip dbh 81.5 24.7

SkD¼ Skidding distance, Av.trp dbh¼Average dbh per trip

Figure 4. Residual plots for all GS work elements and total productive time.

Figure 5. Relationship between observed and predicted GS time on various work elements
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Discussion

This study aimed to quantify and develop predictive 
models for the GS time consumption, productivity, 
and cost using the whole tree harvesting system. The 
objective was to establish baseline information to 
accurately estimate and plan mechanized timber har
vesting in Tanzania plantation forests and other geo
graphical areas which bare similar environmental and 
stand characteristics. Regression and correlation analy
ses were employed to evaluate the influence of 
machine, environmental, and stand characteristics on 
GS performance.

The results revealed that the average PMH for the 
GS was 4.519 and 4.625 minutes, inclusive of necessary 
delays. The study also identified travel loaded (TL) as 
the most time-consuming work element, with an aver
age duration of 2.165 minutes, followed by travel 
empty (TE) i.e., 1.308 minutes. Conversely, unloading 
time was found to be the least time-consuming elem
ent, lasting for only 0.084 minutes. Previous studies by 
Orlovsk�y et al. (2020) and Borz et al. (2015) also high
lighted travel loaded as the mostly time-consuming 

work element for the GS. The GS time in our study 
varies with the one reported by Mauya et al. (2011) 
who conducted similar study in the same forest planta
tion using John Deere 648G (i.e., 4.8 minutes). By 
comparing similar aspects which was assessed in both 
studies, such variations are probably due to the type of 
machine used, terrain condition and operator experi
ence. This can be justified by higher delay time in the 
study by Mauya et al. (2011) which took 20.4% of the 
entire GS productive time mainly due to presence of 
obstacles in the skidding trails and poor grappling of 
logs, compared with the one reported in our study 
(which took only 2.3% of the GS productive time).

The average GS productivity and costs under PHM 
approach (i.e., 67.5 m3/h and 3.363 USD/m3 respect
ively) was 2.6% higher than the one including delays, 
while costs under PMH was 2.1% lower than the one 
including delays. This was further justified by the 
results from the paired t-test which indicated that 
there was statistically significant differences (p-value <
0.05) of productivity and costs between the two 
approaches. This implies that, through ensuring 

Figure 6. Residual and scatter plots for GS productivity and costs models

Table 5. Performance of productivity and cost models on various distances and slope classes.

Skidder Productivity (m3/h) Unit skidding costs (USD/m3)

Distance class (m) RMSE RMSEr (%) RMSE RMSEr (%)

0.00-50.0 12.1 18.8 0.6 17.1
50.1-100.0 15.4 24.1 1.5 43.4
100.1-150.0 18.0 28.1 2.3 65.9

Slope class (%) RMSE RMSEr (%) RMSE RMSEr (%)

0.00 - 10.0 40.2 62.7 0.6 18.6
10.1 - 20.0 40.4 62.9 1.5 43.4
20.1 - 30.0 40.7 63.5 2.4 68.6
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effective supervision, we can minimise operational 
delays, improving GS productivity by 2.6% and reduce 
the skidding operational costs by 2.1%. The GS prod
uctivity and costs values under this study fall within 
the range reported in other studies. For example, 
Ghaffariyan (2020a) and Klepac and Mitchell (2016) 
reviewed skidder productivity in coniferous forest 
plantations and reported a productivity range of 9.3 
m3/h to 78 m3/hr. Dodson et al. (2006) reported an 
average GS productivity of 88.7 m3/h when using the 
whole tree system in Central Oregon for Juniperus 
occidentalis forest stands. Adebayo et al. (2007) 
reported an average productivity of 58.3 m3/h for Cat 
D-518 GS in northern Idaho, with an average skidding 
distance of 130 m and slope ranging from 3% to 34%. 
These studies revealed that average skidded volume 
per trip, extraction distance, and slope are major 

factors influencing GS productivity and costs. For 
instance, Ghaffariyan (2020b) reported lower GS prod
uctivity on steep slopes (25% to 40%), ranging from 20 
m3/h to 48 m3/h. Additionally, Dodson et al. (2006) 
reported a unit skidding cost of 1.52 USD/m3 using 
the conventional timber harvesting system. 
Furthermore, Akay et al. (2004) reported an average 
productivity and costs of 19.2 m3/h and 15.35 USD/m3 

using CAT 525 GS in Turkish forests when harvesting 
cedars, pines and firs tree species. The average load 
volume per turn was 0.68 m3 and the mean slope was 
31%. Kulak et al. (2017) reported the GS productivity 
range of 8 m3/h to 14 m3/h in Pinus sylvestris, south
ern Poland using John Deere 548G-III in a skidding 
distance ranged between 124 m and 246 m, and the 
load volume per turn ranged from 1.86 m3 to 2.95 m3. 
Moreover, study by Ngulube, (2012) reported an 

Figure 7. a. Error bars show the performance of productivity and cost models on various distances. 
b. Error bars show the performance of productivity and cost models on various slopes.
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average GS productivity of 21.5 m3/h when using CAT 
525C grapple skidder and whole tree harvesting sys
tem. The reported terrain slope under this study varied 
between 5% and 25%, with an average of 11.5%, while 
the average load volume and skidding distance was 
1.45 m3 and 134 m respectively. However, most of 
these studies were conducted in the geographical 
regions outside Tanzania and therefore, comparison 
was aimed on getting the global overview trend of GS 
productivity and costs. But to our understanding this 
study is one among the few studies conducted in the 
plantation forests of Tanzania and the first study to 
explore the productivity and costs of GS when skid
ding using whole tree harvesting system, and predict
ing GS performance using GLM approach.

To enhance applications of GS in the areas with 
similar terrain and stand characteristics, statistical 
models for predicting GS time consumption, product
ivity and costs were developed. The results showed 
that, all selected predictor variables for the GS time 
consumption, productivity, and costs predictions were 
significant (p-value < 0.05), except for unload
ing (UNL).

The performance of the time consumption models 
for the different GS work elements was assessed using 
pseudo-R-square and RMSEr value. The highest 
pseudo-R-square value (i.e., 81.5%) was observed in 
the GS total productive time, while the lowest pseudo- 
R-square value (i.e., 9.4%) was observed in unloading 
(UNL). The residual plot for unloading showed a fun
nel pattern, likely due to fewer observations having 
higher deviation from the average value. A higher 
pseudo-R-square (i.e., 81.5%) indicated a better fit of 
the predictor variables in the model, meaning that 
selected variables; skidding distance, slope, and average 
tree dbh per trip were the good predictors of the GS 
skidding time. This is in line with the previous studies 
by Hiesl (2013), Kopseak et al. (2021), Ngulube et al. 
(2014), and Vitorelo (2011) which also highlighted 
skidding distance, slope, and load volume as the main 
predictors of GS cycle time (p-value < 0.05). For the 
productivity and costs models, the pseudo-R-square 
values were 58.1% and 64.3%, respectively, falling 
within the range reported in other studies e.g., (Visser 
and Stampfer 2003) reported a GS productivity model 
with an R-square value of 62%, significantly impacted 
by skidding distance and volume per load (p-value <
0.05). To further explore the performance of the mod
els, K-fold cross validation was used to test the reliabil
ity of the models. The results revealed that prediction 
accuracy of the model decreased as the terrain varia
bles (i.e., slope and distance) increase (Table 5). 
Higher GS productivity and costs prediction accuracy 
(i.e., RMSEr ¼ 18.8% and RMSEr ¼ 17.1%) were 
observed in a distance and slope class of 0.0 – 50 m 
and 0.0 – 10.0% respectively, while lower prediction 
accuracy was found at a higher distance and slope class 
(p-value < 0.05). Moreover, slight variation in RMSEr 
value was observed in all slope classes as compared to 
higher variation among distance classes. That is due to 
lower variation (Çalişkan, 2019) in the range of the 

measured filed slope variable (i.e., 13 ± 7.9%) compared 
to field measured distance (i.e., 59 ± 36 m). Moreover, 
model’s prediction accuracy in this study may be influ
enced by other factors which were beyond the scope of 
this study, including modelling techniques. For 
instance, study by Munis et al. (2023) showed that 
other machine learning techniques such as Random 
Forest has higher prediction accuracy (i.e., RMSE ¼
18.37 ± 13.10) compared to Linear regression model 
(i.e., RMSE ¼ 28.82 ± 12.88) when modelling forwarder 
performance in Brazilian Pinus and Eucalyptus planted 
forests.

Generally, the findings of this study generated a 
baseline information in operationalisation of the GS in 
Tanzania forest plantation, of which such information 
(i.e., skidding using whole tree harvesting system) was 
not present before. Moreover, further studies on het
erogeneous landscape with more terrain variation are 
recommended to explore its influence on GS perform
ance. Also, other modelling techniques such as 
machine learning are encouraged to assess their predic
tion accuracy on GS performance. Lastly, this study 
was conducted during the dry season. Hence, these 
models will be appropriate once machine work on the 
area bearing similar spatial and temporal characteris
tics. Further studies of the GS performance on wet 
condition are also recommended.

Conclusion

The study examined the productivity and costs associ
ated with GS in two different approaches: using PMH 
and including delay time. The developed models for 
predicting GS time consumption, productivity, and 
costs using whole tree conventional timber harvesting 
system, indicated that variables; distance, slope, average 
tree dbh, and volume per trip were the significant pre
dictors of the GS performance. These findings provide 
valuable guidelines to planners for an effective resour
ces and facilities allocation, enabling the fulfilment of 
timber demand within targeted timelines and maximiz
ing profit. Moreover, the study’s findings have broader 
implications to forest plantations with similar environ
mental and stand characteristics. The insights gained 
can contribute to better planning of future harvesting 
operations, ensuring improved efficiency and product
ivity of the GS. Further studies are encouraged to 
explore potentials of other modelling techniques on GS 
time consumption, productivity and costs predictions.
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